--- title: "overview" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{overview} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` ```{r setup} library(bnRep) ``` The R package `bnRep` includes the largest repository of Bayesian networks, which were all collected from recent academic literature in a variety of fields! If you are using any Bayesian network from `bnRep` you should cite: Leonelli, M (2024). "bnRep: A repository of Bayesian networks from the academic literature." ArXiv 24.... ``` @Article{, title = {bn{R}ep: A repository of {B}ayesian networks from the academic literature}, author = {Manuele Leonelli}, journal = {Arxiv}, year = {2024} } ``` Go to (link here) to explore the repository online! ## Contribution If you are interested in having your Bayesian network included in `bnRep` you must prepare three objects: - the Bayesian network as a `bn.fit` object (if not created with `bnlearn` you can always use import functions, such as `read.bif()`); - an R file with the same name of the `bn.fit` object reporting the documentation of the Bayesian network; - a vector/excel file with the required details to include in the `bnRep_summary` object. You can submit the required objects directly via github (e.g fork/pull), or via email. If you struggle with any of these steps, please get in touch and I will try to help! ## Overview `bnRep` includes over 200 Bayesian networks from more than 150 academic publications. It includes discrete, Gaussian and conditional linear Gaussian Bayesian networks, all stored as appropriate `bn.fit` objects from `bnlearn`. They can be exported for use to other software (e.g. Phython libraries) using functions from `bnlearn` such as `write.bif()`. Recall that in order to plot the associated DAG, one must first convert it to a graph object with `bn.net()` from the `bnlearn` package. ### Installation ```{r, eval = FALSE} # Install stable version from CRAN: install.packages("bnRep") # Or the development version from GitHub: remotes::install_github("manueleleonelli/bnRep") ``` ### Usage We will use the `lawschool` Bayesian network as an example. To load it in the environment simply call `data(lawschool)` and to then plot it (for instance using `graphviz.plot` from the `bnlearn` package) ```{r message=F, out.width="50%"} library(bnRep) library(bnlearn) data("lawschool") qgraph::qgraph(bn.net(lawschool)) ``` Notice that the function `bn.net` function must be used in order to plot the network. ### Exploring bnRep `bnRep` includes two features to explore the Bayesian networks in the repository: - `bnRep_summary`: a dataframe with important details about each network in the repository. - `bnRep_app`: a Shiny app to interactively explore `bnRep_summary` and filter the networks according to various criteria. The app is also available online at (link here). Here's the columns of `bnRep_summary`: ```{r echo=F} colnames(bnRep_summary) ``` ### An overview of the Bayesian networks in bnRep The following plots show some summary statistics of the repository. ```{r echo=F,message= F, out.width="50%"} library(ggplot2) library(dplyr) library(stringr) library(scales) library(RColorBrewer) # Assuming bnRep_summary is your data frame and Type is a factor column # Creating the barplot with percentages on the Y-axis and labels on the bars bnRep_summary %>% count(Type) %>% mutate(perc = n / sum(n) * 100) %>% ggplot(aes(x = Type, y = perc, fill = Type)) + geom_bar(stat = "identity", width = 0.7, color = "black", show.legend = FALSE) + geom_text(aes(label = paste0(round(perc, 1), "%")), vjust = -0.5, size = 5, color = "black") + scale_y_continuous(labels = scales::percent_format(scale = 1), limits = c(0, 100)) + labs(title = "Bayesian networks by type", x = "Type", y = "Percentage") + theme_minimal(base_size = 15) + theme( plot.title = element_text(hjust = 0.5, face = "bold"), axis.text.x = element_text(angle = 45, hjust = 1), panel.grid.major = element_line(color = "gray80"), panel.grid.minor = element_blank() ) + scale_fill_brewer(palette = "Pastel1") ``` ```{r echo=F,message= F, out.width="50%"} bnRep_summary %>% count(Structure) %>% mutate(perc = n / sum(n) * 100) %>% ggplot(aes(x = Structure, y = perc, fill = Structure)) + geom_bar(stat = "identity", width = 0.7, color = "black", show.legend = FALSE) + geom_text(aes(label = paste0(round(perc, 1), "%")), vjust = -0.5, size = 5, color = "black") + scale_y_continuous(labels = scales::percent_format(scale = 1), limits = c(0, 50)) + labs(title = "Bayesian networks by structure definition", x = "Type", y = "Percentage") + theme_minimal(base_size = 15) + theme( plot.title = element_text(hjust = 0.5, face = "bold"), axis.text.x = element_text(angle = 45, hjust = 1), panel.grid.major = element_line(color = "gray80"), panel.grid.minor = element_blank() ) + scale_fill_brewer(palette = "Pastel1") ``` ```{r echo=F,message= F, out.width="50%"} bnRep_summary %>% count(Probabilities) %>% mutate(perc = n / sum(n) * 100) %>% ggplot(aes(x = Probabilities, y = perc, fill = Probabilities)) + geom_bar(stat = "identity", width = 0.7, color = "black", show.legend = FALSE) + geom_text(aes(label = paste0(round(perc, 1), "%")), vjust = -0.5, size = 5, color = "black") + scale_y_continuous(labels = scales::percent_format(scale = 1), limits = c(0, 60)) + labs(title = "Bayesian networks by probabilities definition", x = "Type", y = "Percentage") + theme_minimal(base_size = 15) + theme( plot.title = element_text(hjust = 0.5, face = "bold"), axis.text.x = element_text(angle = 45, hjust = 1), panel.grid.major = element_line(color = "gray80"), panel.grid.minor = element_blank() ) + scale_fill_brewer(palette = "Pastel1") ``` ```{r echo=F,message= F, out.width="50%"} bnRep_summary %>% count(Graph) %>% mutate(perc = n / sum(n) * 100) %>% ggplot(aes(x = Graph, y = perc, fill = Graph)) + geom_bar(stat = "identity", width = 0.7, color = "black", show.legend = FALSE) + geom_text(aes(label = paste0(round(perc, 1), "%")), vjust = -0.5, size = 5, color = "black") + scale_y_continuous(labels = scales::percent_format(scale = 1), limits = c(0, 70)) + labs(title = "Bayesian networks by graph type", x = "Type", y = "Percentage") + theme_minimal(base_size = 15) + theme( plot.title = element_text(hjust = 0.5, face = "bold"), axis.text.x = element_text(angle = 45, hjust = 1), panel.grid.major = element_line(color = "gray80"), panel.grid.minor = element_blank() ) + scale_fill_brewer(palette = "Pastel1") ``` ```{r echo=F,message= F, out.width="50%"} custom_colors <- colorRampPalette(RColorBrewer::brewer.pal(9, "Pastel1"))(length(unique(bnRep_summary$Area))) bnRep_summary %>% count(Area) %>% mutate(perc = n / sum(n) * 100) %>% ggplot(aes(x = Area, y = perc, fill = Area)) + geom_bar(stat = "identity", width = 0.7, color = "black", show.legend = FALSE) + geom_text(aes(label = paste0(round(perc, 1), "%")), vjust = -0.5, size = 3.5, color = "black") + scale_y_continuous(labels = scales::percent_format(scale = 1), limits = c(0, 25)) + labs(title = "Bayesian networks by academic area", x = "Type", y = "Percentage") + theme_minimal(base_size = 15) + theme( plot.title = element_text(hjust = 0.5, face = "bold"), axis.text.x = element_text(angle = 60, hjust = 1), panel.grid.major = element_line(color = "gray80"), panel.grid.minor = element_blank() ) + scale_fill_manual(values = custom_colors) ``` ```{r echo=F,message= F, out.width="50%"} bnRep_summar <- bnRep_summary bnRep_summar <- bnRep_summar %>% mutate(Year = ifelse(Year <= 2019, "2019 and earlier", as.character(Year))) # Convert Year into a factor for plotting bnRep_summar$Year <- factor(bnRep_summar$Year, levels = c("2019 and earlier", sort(unique(bnRep_summar$Year[bnRep_summar$Year != "2019 and earlier"])))) bnRep_summar %>% count(Year) %>% mutate(perc = n / sum(n) * 100) %>% ggplot(aes(x = Year, y = perc, fill = Year)) + geom_bar(stat = "identity", width = 0.7, color = "black", show.legend = FALSE) + geom_text(aes(label = paste0(round(perc, 1), "%")), vjust = -0.5, size = 5, color = "black") + scale_y_continuous(labels = scales::percent_format(scale = 1), limits = c(0, 35)) + labs(title = "Bayesian networks by year", x = "Type", y = "Percentage") + theme_minimal(base_size = 15) + theme( plot.title = element_text(hjust = 0.5, face = "bold"), axis.text.x = element_text(angle = 45, hjust = 1), panel.grid.major = element_line(color = "gray80"), panel.grid.minor = element_blank() ) + scale_fill_brewer(palette = "Pastel1") ``` ```{r echo=F,message= F, out.width="50%"} unique_journals_df <- bnRep_summary %>% distinct(Reference, .keep_all = TRUE) %>% group_by(Journal) %>% filter(n() >= 3) %>% ungroup() unique_journals_df <- unique_journals_df %>% mutate(Journal = stringr::str_replace_all(Journal, "\\s", "\n")) # Create a barplot with counts instead of percentages unique_journals_df %>% count(Journal) %>% ggplot(aes(x = Journal, y = n, fill = Journal)) + # y = n for counts geom_bar(stat = "identity", width = 0.7, color = "black", show.legend = FALSE) + geom_text(aes(label = n), vjust = -0.5, size = 5, color = "black") + # Show counts on top of bars labs(title = "Bayesian Networks by Journal (having at least 3)", x = "Journal", y = "Count") + theme_minimal(base_size = 15) + theme( plot.title = element_text(hjust = 0.5, face = "bold"), axis.text.x = element_text(angle = 0, hjust = 0.5), # No rotation, centered panel.grid.major = element_line(color = "gray80"), panel.grid.minor = element_blank() ) + scale_fill_brewer(palette = "Pastel1")+ scale_y_continuous(limits = c(0, 7)) ``` ```{r echo = F, out.width="50%"} # Create the histogram with log10 scale on the x-axis ggplot(bnRep_summary, aes(x = Nodes)) + geom_histogram(binwidth = 0.1, fill = "skyblue", color = "black", alpha = 0.7) + # Customize the appearance scale_x_log10() + # Set x-axis to log10 scale labs(title = "Distribution of Nodes (Log10 Scale)", x = "Number of Nodes (log10 scale)", y = "Count") + theme_minimal(base_size = 15) + # Use a clean theme with larger base text size theme( plot.title = element_text(hjust = 0.5, face = "bold"), # Center the title axis.title.x = element_text(face = "bold"), # Make x-axis title bold axis.title.y = element_text(face = "bold"), # Make y-axis title bold panel.grid.major = element_line(color = "gray80"), # Customize grid lines panel.grid.minor = element_blank(), # Remove minor grid lines for a cleaner look axis.text.x = element_text(angle = 45, hjust = 1) # Angle the x-axis labels for better readability ) + scale_fill_brewer(palette = "Set2") # Use a custom color palette ``` ```{r echo =F, out.width="50%"} ggplot(bnRep_summary, aes(x = Arcs)) + geom_histogram(binwidth = 0.1, fill = "skyblue", color = "black", alpha = 0.7) + # Customize the appearance scale_x_log10() + # Set x-axis to log10 scale labs(title = "Distribution of Arcs (Log10 Scale)", x = "Number of Arcs (log10 scale)", y = "Count") + theme_minimal(base_size = 15) + # Use a clean theme with larger base text size theme( plot.title = element_text(hjust = 0.5, face = "bold"), # Center the title axis.title.x = element_text(face = "bold"), # Make x-axis title bold axis.title.y = element_text(face = "bold"), # Make y-axis title bold panel.grid.major = element_line(color = "gray80"), # Customize grid lines panel.grid.minor = element_blank(), # Remove minor grid lines for a cleaner look axis.text.x = element_text(angle = 45, hjust = 1) # Angle the x-axis labels for better readability ) + scale_fill_brewer(palette = "Set2") ```