Package: bnmonitor 0.2.2
Manuele Leonelli
bnmonitor: An Implementation of Sensitivity Analysis in Bayesian Networks
An implementation of sensitivity and robustness methods in Bayesian networks in R. It includes methods to perform parameter variations via a variety of co-variation schemes, to compute sensitivity functions and to quantify the dissimilarity of two Bayesian networks via distances and divergences. It further includes diagnostic methods to assess the goodness of fit of a Bayesian networks to data, including global, node and parent-child monitors. Reference: M. Leonelli, R. Ramanathan, R.L. Wilkerson (2022) <doi:10.1016/j.knosys.2023.110882>.
Authors:
bnmonitor_0.2.2.tar.gz
bnmonitor_0.2.2.zip(r-4.5)bnmonitor_0.2.2.zip(r-4.4)
bnmonitor_0.2.2.tgz(r-4.4-any)
bnmonitor_0.2.2.tar.gz(r-4.5-noble)bnmonitor_0.2.2.tar.gz(r-4.4-noble)
bnmonitor_0.2.2.tgz(r-4.4-emscripten)
bnmonitor.pdf |bnmonitor.html✨
bnmonitor/json (API)
# Install 'bnmonitor' in R: |
install.packages('bnmonitor', repos = c('https://manueleleonelli.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/manueleleonelli/bnmonitor/issues
- cachexia_ci - Bayesian networks for a cachexia study
- cachexia_data - Bayesian networks for a cachexia study
- cachexia_gbn - Bayesian networks for a cachexia study
- chds - Christchurch Health and Development Study
- chds_bn - Christchurch Health and Development Study
- chds_bn.fit - Christchurch Health and Development Study
- control_ci - Bayesian networks for a cachexia study
- control_gbn - Bayesian networks for a cachexia study
- diabetes - Pima Indian Diabetes Data
- fire_alarm - Bayesian network on fire alarm system
- mathmarks - Math Marks Data
- synthetic_bn - A synthetic Bayesian network
- synthetic_ci - A synthetic continuous Bayesian network
- synthetic_gbn - A synthetic continuous Bayesian network
- travel - Bayesian network on travel survey
Last updated 2 months agofrom:cab71e609c. Checks:OK: 5. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 30 2024 |
R-4.5-win | OK | Oct 30 2024 |
R-4.5-linux | OK | Oct 30 2024 |
R-4.4-win | OK | Oct 30 2024 |
R-4.4-mac | OK | Oct 30 2024 |
Exports:amalgamationasy_measurebn2cibn2gbnCDcol_covar_matrixcovariance_vardiameterdwiedge_strengthewifinal_node_monitorFroglobal_monitorinfluential_obsJeffreysKLKL_boundsmean_varmodel_pres_covmutual_infonode_monitororderp_covarpartial_covar_matrixproportional_covarpsd_checkrow_covar_matrixsensitivitysensqueryseq_cond_monitorseq_marg_monitorseq_pa_ch_monitortotal_covar_matrixuniform_covar
Dependencies:abindbackportsbase64encbnlearnbroombslibcachemcheckmatecliclustercolorspacecorpcorcpp11data.tabledigestdplyrevaluatefansifarverfastmapfdrtoolfontawesomeforeignFormulafsgenericsggplot2glassoglueGPArotationgRaingRbasegridExtragtablegtoolshighrHmischtmlTablehtmltoolshtmlwidgetsigraphisobandjpegjquerylibjsonliteknitrlabelinglatticelavaanlifecyclemagrittrMASSMatrixmemoisemgcvmimemnormtmunsellnlmennetnumDerivpbapplypbivnormpillarpkgconfigplyrpngpsychpurrrqgraphquadprogR6rappdirsRColorBrewerRcppRcppArmadilloRcppEigenreshape2rlangrmarkdownrpartrstudioapisassscalesstringistringrtibbletidyrtidyselecttinytexutf8vctrsviridisviridisLitewithrxfunyaml