Package: extrememix 0.0.1

Manuele Leonelli

extrememix: Bayesian Estimation of Extreme Value Mixture Models

Fits extreme value mixture models, which are models for tails not requiring selection of a threshold, for continuous data. It includes functions for model comparison, estimation of quantity of interest in extreme value analysis and plotting. Reference: CN Behrens, HF Lopes, D Gamerman (2004) <doi:10.1191/1471082X04st075oa>. FF do Nascimento, D. Gamerman, HF Lopes <doi:10.1007/s11222-011-9270-z>.

Authors:Manuele Leonelli [aut, cre, cph]

extrememix_0.0.1.tar.gz
extrememix_0.0.1.zip(r-4.5)extrememix_0.0.1.zip(r-4.4)extrememix_0.0.1.zip(r-4.3)
extrememix_0.0.1.tgz(r-4.4-x86_64)extrememix_0.0.1.tgz(r-4.4-arm64)extrememix_0.0.1.tgz(r-4.3-x86_64)extrememix_0.0.1.tgz(r-4.3-arm64)
extrememix_0.0.1.tar.gz(r-4.5-noble)extrememix_0.0.1.tar.gz(r-4.4-noble)
extrememix_0.0.1.tgz(r-4.4-emscripten)extrememix_0.0.1.tgz(r-4.3-emscripten)
extrememix.pdf |extrememix.html
extrememix/json (API)
NEWS

# Install 'extrememix' in R:
install.packages('extrememix', repos = c('https://manueleleonelli.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/manueleleonelli/extrememix/issues

Uses libs:
  • c++– GNU Standard C++ Library v3
Datasets:

On CRAN:

4.48 score 2 stars 4 scripts 174 downloads 23 exports 96 dependencies

Last updated 1 months agofrom:5ac20adb0d. Checks:OK: 9. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 20 2024
R-4.5-win-x86_64OKNov 20 2024
R-4.5-linux-x86_64OKNov 20 2024
R-4.4-win-x86_64OKNov 20 2024
R-4.4-mac-x86_64OKNov 20 2024
R-4.4-mac-aarch64OKNov 20 2024
R-4.3-win-x86_64OKNov 20 2024
R-4.3-mac-x86_64OKNov 20 2024
R-4.3-mac-aarch64OKNov 20 2024

Exports:check_convergencedggpdDICdmgammadmgpdESfggpdfmgpdpggpdpmgammapmgpdpredqggpdqmgammaqmgpdquantreturn_levelrggpdrmgammarmgpdupper_boundVaRWAIC

Dependencies:abindaskpassbackportsbase64encbayesplotbslibcachemchandwichcheckmateclicolorspacecpp11crosstalkcurldata.tabledigestdistributionaldplyrevaluateevdexdexfansifarverfastmapfontawesomefsgenericsggplot2ggridgesgluegridExtragtablehighrhtmltoolshtmlwidgetshttrisobandjquerylibjsonlitekernlabknitrlabelinglaterlatticelazyevallifecyclemagrittrMASSMatrixmatrixStatsmemoisemgcvmimemixtoolsmunsellnlmenumDerivopensslpillarpkgconfigplotlyplyrposteriorpromisespurrrR6rappdirsRColorBrewerRcppRcppArmadilloRcppProgressRcppRollreshape2revdbayesrlangrmarkdownrustsassscalessegmentedstringistringrsurvivalsystensorAthreshrtibbletidyrtidyselecttinytexutf8vctrsviridisLitewithrxfunyaml

extrememix R package

Rendered frommy-vignette.Rmdusingknitr::rmarkdownon Nov 20 2024.

Last update: 2024-10-21
Started: 2021-07-06

Readme and manuals

Help Manual

Help pageTopics
Convergence Assessment of MCMC Algorithmscheck_convergence check_convergence.evmm
Deviance Information CriterionDIC DIC.evmm
Expected ShortfallES ES.evmm
GGPD Estimationfggpd
MGPD Estimationfmgpd
The GGPD distributiondggpd ggpd pggpd qggpd rggpd
Log-likelihood MethodlogLik.evmm
The Gamma Mixture Distributiondmgamma mgamma pmgamma qmgamma rmgamma
The MGPD distributiondmgpd mgpd pmgpd qmgpd rmgpd
Plot Methods for Summariesplot.ES plot.quant plot.return_level plot.VaR plot_summaries
Plot of Extreme Value Mixture Modelsplot.evmm
Plot Upper Boundsplot.upper_bound
Predictive Distributionpred pred.evmm
Printing Methodsprint print.ES print.evmm print.quantile print.return_level print.summary.ggpd print.upper_bound print.VaR
Estimated Quantilesquant quant.evmm
Monthly Maxima Daily Rainfall in Madridrainfall
Rainfall FGGPD Outputrainfall_ggpd
Rainfall FMGPD Outputrainfall_mgpd
Return Levelsreturn_level return_level.evmm
Summary Methodsummary.evmm
Upper Boundupper_bound upper_bound.evmm
Value-at-RiskVaR VaR.evmm
Widely Applicable Information CriteriaWAIC WAIC.evmm